Cubspherinder (EntityTopic, 13)

From Hi.gher. Space

(Difference between revisions)
m
m
Line 22: Line 22:
{{Pentashapes}}
{{Pentashapes}}
{{Tapertope Nav|32|33|34|32<br>Cylspherinder|311<br>Cubspherinder|221<br>Duocyldyinder|tera}}
{{Tapertope Nav|32|33|34|32<br>Cylspherinder|311<br>Cubspherinder|221<br>Duocyldyinder|tera}}
-
{{Toratope Nav A|11|12|13|(II)(II)I<br>Duocyldyinder|((II)(II)I)<br>Toraduocyldyinder|(III)II<br>Cubspherinder|((III)II)<br>Toracubspherinder|((II)I)II<br>Cubtorinder|(((II)I)II)<br>Toracubtorinder| tera}}
+
{{Toratope Nav A|11|12|13|(II)(II)I<br>Duocyldyinder|((II)(II)I)<br>Toraduocyldyinder|(III)II<br>Cubspherinder|((III)II)<br>Toracubspherinder|((II)I)II<br>Cubtorinder|(((II)I)II)<br>Toracubtorinder|tera}}
{{Bracketope Nav|57|58|59|[(<xy>z)wφ]<br>Narrow crindal diprism|[(xyz)wφ]<br>Cubspherinder|[<[xyz]w>φ]<br>Cubic bipyramidal prism|tera}}
{{Bracketope Nav|57|58|59|[(<xy>z)wφ]<br>Narrow crindal diprism|[(xyz)wφ]<br>Cubspherinder|[<[xyz]w>φ]<br>Cubic bipyramidal prism|tera}}

Revision as of 14:17, 26 November 2009


A cubspherinder is the Cartesian product of a sphere and a square. It is also the prism with a spherinder as the base, so it may also be called a spherical diprism.


Notable Pentashapes
Flat: pyroteronaeroterongeoteron
Curved: tritoruspentasphereglonecylspherindertesserinder


32. 32
Cylspherinder
33. 311
Cubspherinder
34. 221
Duocyldyinder
List of tapertopes


11a. (II)(II)I
Duocyldyinder
11b. ((II)(II)I)
Toraduocyldyinder
12a. (III)II
Cubspherinder
12b. ((III)II)
Toracubspherinder
13a. ((II)I)II
Cubtorinder
13b. (((II)I)II)
Toracubtorinder
List of toratopes


57. [(<xy>z)wφ]
Narrow crindal diprism
58. [(xyz)wφ]
Cubspherinder
59. [<[xyz]w>φ]
Cubic bipyramidal prism
List of bracketopes