Cubspherinder (EntityTopic, 13)
From Hi.gher. Space
(Difference between revisions)
m |
m |
||
Line 6: | Line 6: | ||
| ssc=[(xyz)wφ] | | ssc=[(xyz)wφ] | ||
| ssc2=++T3 | | ssc2=++T3 | ||
- | | extra={{STS | + | | extra={{STS Tapertope |
- | | | + | | order=3, 0 |
- | | notation=311 ( | + | | notation=311 |
- | | index= | + | | index=33 |
+ | }}{{STS Toratope | ||
+ | | holeseq=[0, 1] | ||
+ | | notation=(III)II | ||
+ | | index=12a | ||
}}{{STS Bracketope | }}{{STS Bracketope | ||
| index=58 | | index=58 | ||
Line 17: | Line 21: | ||
{{Pentashapes}} | {{Pentashapes}} | ||
- | {{ | + | {{Tapertope Nav|32|33|34|32<br>Cylspherinder|311<br>Cubspherinder|221<br>Duocyldyinder|chora}} |
+ | {{Toratope Nav A|11|12|13|(II)(II)I<br>Duocyldyinder|((II)(II)I)<br>Toraduocyldyinder|(III)II<br>Cubspherinder|((III)II)<br>Toracubspherinder|((II)I)II<br>Cubtorinder|(((II)I)II)<br>Toracubtorinder|chora}} | ||
{{Bracketope Nav|57|58|59|[(<xy>z)wφ]<br>Narrow crindal diprism|[(xyz)wφ]<br>Cubspherinder|[<[xyz]w>φ]<br>Cubic bipyramidal prism|tera}} | {{Bracketope Nav|57|58|59|[(<xy>z)wφ]<br>Narrow crindal diprism|[(xyz)wφ]<br>Cubspherinder|[<[xyz]w>φ]<br>Cubic bipyramidal prism|tera}} |
Revision as of 20:22, 25 November 2009
A cubspherinder is the Cartesian product of a sphere and a square. It is also the prism with a spherinder as the base, so it may also be called a spherical diprism.
Notable Pentashapes | |
Flat: | pyroteron • aeroteron • geoteron |
Curved: | tritorus • pentasphere • glone • cylspherinder • tesserinder |
32. 32 Cylspherinder | 33. 311 Cubspherinder | 34. 221 Duocyldyinder |
List of tapertopes |
11a. (II)(II)I Duocyldyinder | 11b. ((II)(II)I) Toraduocyldyinder | 12a. (III)II Cubspherinder | 12b. ((III)II) Toracubspherinder | 13a. ((II)I)II Cubtorinder | 13b. (((II)I)II) Toracubtorinder |
List of toratopes |
57. [(<xy>z)wφ] Narrow crindal diprism | 58. [(xyz)wφ] Cubspherinder | 59. [<[xyz]w>φ] Cubic bipyramidal prism |
List of bracketopes |