Spheritorus (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m (1 revision(s))
m (rm spam)
Line 30: Line 30:
{{Polychora}}
{{Polychora}}
{{Rotopes}}
{{Rotopes}}
-
 
-
 
-
 
-
[http://www.magical-casino.com/online_bonus.html Bonuses in Online Casinos.]
 
-
[http://www.magical-casino.com/casino_games.html Casino games.]
 
-
[http://www.magical-casino.com/casino_bonus.html Casino Bonus ]
 
-
[http://www.casinos-go.com/online-casino-tips/free-online-casino-slot.html free online casino slot]
 
-
[http://www.casino-theory.com/online-casino-royale/strategy-online-casino.html strategy online casino]
 
-
[http://www.casino-theory.com/online-casino-royale/online-casino-gamble.html online casino gamble]
 
-
[http://www.casino-theory.com/bingo-online/gambling-online-bingo.html gambling online bingo]
 
-
[http://www.bestweb-online-casinos.com/best-online-casino/online-casino-free-game.html online casino free game]
 
-
[http://www.casino-games-wiki.com/index.php/casino_games_online casino games online]
 
-
[http://www.slots-wiki.com/index.php/slots_tips slots tips]
 

Revision as of 10:56, 16 June 2007

Template:Shape

Geometry

The toracubinder is a special case of a surcell of revolution where the base is a cylinder.

Equations

  • Variables:
R ⇒ major radius of the toracubinder
r ⇒ minor radius of the toracubinder
h ⇒ height of the toracubinder
  • All points (x, y, z, w) that lie on the surcell of a toracubinder will satisfy the following equation:
(sqrt(x2+y2)-R)2 + z2 + w2 = r2
  • The parametric equations are:
x = r cos a cos b cos c + R cos c
y = r cos a cos b sin c + R sin c
z = r cos a sin b
w = r sin a
total edge length = Unknown
total surface area = Unknown
surcell volume = 4π2Rr(r+h)
bulk = 2π2Rr2h
Unknown



Template:Polychora Template:Rotopes