Aeroteron (EntityTopic, 14)
From Hi.gher. Space
(Difference between revisions)
m (add) |
m |
||
Line 1: | Line 1: | ||
- | {{Shape|Icosidodecateron| | + | {{Shape |
+ | | attrib=pure | ||
+ | | name=Icosidodecateron | ||
+ | | dim=5 | ||
+ | | elements=32, 80, 80, 40, 10 | ||
+ | | genus=0 | ||
+ | | 20=SSC | ||
+ | | ssc=<nowiki>{{{</nowiki>G3<sup>3</sup>}<sup>4</sup>}<sup>8</sup>} | ||
+ | | bra_i=99 | ||
+ | | schlaefli={[[Triangle|3]],[[Tetrahedron|3]],[[Pentachoron|3]],4} | ||
+ | | vlayout=(([[Triangle|3]]<sup>[[Tetrahedron|3]]</sup>)<sup>[[Pentachoron|4]]</sup>)<sup>8</sup> | ||
+ | | vfigure=[[Hexadecachoron]] | ||
+ | | dual=[[Pentacube]] | ||
+ | }} | ||
The '''icosidodecateron''' is the 5-dimensional [[cross polytope]], and the [[dual]] of the [[pentacube]]. | The '''icosidodecateron''' is the 5-dimensional [[cross polytope]], and the [[dual]] of the [[pentacube]]. |
Revision as of 20:53, 19 November 2007
The icosidodecateron is the 5-dimensional cross polytope, and the dual of the pentacube.
Geometry
Equations
- Variables:
l ⇒ length of the edges of the icosidodecateron
- All points (x, y, z, w, φ) that lie on the surteron of a pentacube will satisfy the following equation:
Unknown
- The hypervolumes of an icosidodecateron are given by:
Unknown
- The flunic cross-sections (n) of a n icosidodecateron are:
Unknown
Notable Pentashapes | |
Flat: | pyroteron • aeroteron • geoteron |
Curved: | tritorus • pentasphere • glone • cylspherinder • tesserinder |
98. <[xy]zwφ> Wide icosidodecateron | 99. <xyzwφ> Icosidodecateron | 100. <(xy)zwφ> Tribicone |
List of bracketopes |