Pentasphere (EntityTopic, 15)

From Hi.gher. Space

(Difference between revisions)
m
m (fix)
Line 1: Line 1:
-
{{Shape|Pentasphere|''No image''|5|1, 0, 0, 0, 0|0|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Sphere|L]][[Glome|L]]L|5 (xyzwφ)|N/A|N/A|N/A|47|(xyzwφ)|112|pure}}
+
{{Shape|Pentasphere|''No image''|5|1, 0, 0, 0, 0|0|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Sphere|L]][[Glome|L]]L|5 (xyzwφ)|N/A|N/A|N/A|47|(xyzwφ)|148|pure}}
== Geometry ==
== Geometry ==
Line 23: Line 23:
{{Pentashapes}}
{{Pentashapes}}
{{Rotope Nav|46|47|48|IIII'<br>Tesseric pyramid|(IIIII)<br>Pentasphere|III'I<br>Cubic pyramid prism|tera}}
{{Rotope Nav|46|47|48|IIII'<br>Tesseric pyramid|(IIIII)<br>Pentasphere|III'I<br>Cubic pyramid prism|tera}}
-
{{Bracketope Nav|111|112|113|(<xy>zwφ)<br>Narrow tricrind|(xyzwφ)<br>Pentasphere|([<xy><zw>]φ)<br>Small tesseric crind|tera}}
+
{{Bracketope Nav|147|148|149|(<xy>zwφ)<br>Narrow tricrind|(xyzwφ)<br>Pentasphere|([<xy><zw>]φ)<br>Narrow tesseric crind|tera}}

Revision as of 20:17, 17 September 2007

Template:Shape

Geometry

Equations

  • Variables:
r ⇒ radius of the pentasphere
  • All points (x, y, z, w, φ) that lie on the surteron of a pentasphere will satisfy the following equation:
x2 + y2 + z2 + w2 + φ2 = r2
total edge length = 0
total surface area = 0
total surcell volume = 0
surteron bulk = 4π2r48-1
pentavolume = π2r58-1
[!x,!y,!z,!w,!φ] ⇒ glome of radius (rcos(πn/2))


Notable Pentashapes
Flat: pyroteronaeroterongeoteron
Curved: tritoruspentasphereglonecylspherindertesserinder

Template:Rotope Nav

147. (<xy>zwφ)
Narrow tricrind
148. (xyzwφ)
Pentasphere
149. ([<xy><zw>]φ)
Narrow tesseric crind
List of bracketopes