Here is a 2D exploration of the Ditorus (((II)I)I) , T^3
CalcPlot Script:
- Render in 30-35 cubes, move the translate sliders slowly ( for certain computers that are 8 yrs old and broken, like mine )
Bounding Box:
- Set X,Y to -5,+5
- Set Z to -0.01 , +0.01 for 2D
- Go To View Settings > Advanced/Other Settings > # Rotation Steps > Other and click [OK] for 180 rotate steps
Equations Used in Script, by Steps :
(((II)I)I) Exploring in 2D Slices
-------------------------------------------------------
• Step 1: (((Ac)C)a) - Rotate + Translate
(sqrt((sqrt((x*sin(b) + a*cos(b))^2 + (y*cos(d) - c*sin(d))^2) - 2)^2 + (y*sin(d) + c*cos(d))^2) - 1)^2 + (x*cos(b) - a*sin(b))^2 -0.5^2 = 0
- A,C Translates
- B,D Rotates
• Step 2: (((Ac)a)C) - Rotate + Translate
(sqrt((sqrt((x*sin(b) + a*cos(b))^2 + (y*cos(d) - c*sin(d))^2) - 2)^2 + (x*cos(b) - a*sin(b))^2) - 1)^2 + (y*sin(d) + c*cos(d))^2 -0.5^2 = 0
-- I think this one is identical to above ...
• Step 3: (((I))I) - 4x1 row of circles
(sqrt((sqrt(x^2 + a^2) - 2)^2 + b^2) - 1)^2 + y^2 -0.5^2 = 0
- A,B Translates away from center
• Step 4: (((II))) - 4x concentric circles
(sqrt((sqrt(x^2 + y^2) - 2)^2 + a^2) - 1)^2 + b^2 -0.5^2 = 0
• Step 5: (((I)I)) - 2x pair in 2x1 row of circles
(sqrt((sqrt(x^2 + a^2) - 2)^2 + y^2) - 1)^2 + b^2 -0.5^2 = 0