Excellent work, awesome. I've been curious about ditorus polynomial. Also, nice symmetry in these

Both degree-8's have a similar looking layout.
So, ExpandToratope function won't go beyond tiger? Well, we could consolidate all 3D cuts of (((II)I)(II)), which should make full expanded polynomial.
(((II)I)(II)) - (sqrt((sqrt(x^2 + y^2) - a)^2 + z^2) - b)^2 + (sqrt(w^2 + v^2) - c)^2 - d^2
4D
(((x)z)(wv)) = (sqrt((sqrt(x^2) - a)^2 + z^2) - b)^2 + (sqrt(w^2 + v^2) - c)^2 - d^2
(((y)z)(wv)) = (sqrt((sqrt(y^2) - a)^2 + z^2) - b)^2 + (sqrt(w^2 + v^2) - c)^2 - d^2
(((xy))(wv)) = (sqrt((sqrt(x^2 + y^2) - a)^2) - b)^2 + (sqrt(w^2 + v^2) - c)^2 - d^2
(((xy)z)(w)) = (sqrt((sqrt(x^2 + y^2) - a)^2 + z^2) - b)^2 + (sqrt(w^2) - c)^2 - d^2
(((xy)z)(v)) = (sqrt((sqrt(x^2 + y^2) - a)^2 + z^2) - b)^2 + (sqrt(v^2) - c)^2 - d^2
The cut algorithm will tell us which dimensions are stacked along, and which diameters are paired, for a torus
3D : torus (x^2 + y^2 + z^2 + a^2 - b^2)^2 - 4a^2(x^2 + y^2)
1. ((()z)(wv)) = (sqrt((- a)^2 + z^2) - b)^2 + (sqrt(w^2 + v^2) - c)^2 - d^2
(w^2 + v^2 + (z±b±ai)^2 + c^2 - d^2)^2 - 4c^2(w^2 + v^2)
2. (((x))(wv)) = (sqrt((sqrt(x^2) - a)^2) - b)^2 + (sqrt(w^2 + v^2) - c)^2 - d^2
(w^2 + v^2 + (x±a±b)^2 + c^2 - d^2)^2 - 4c^2(w^2 + v^2)
3. (((y))(wv)) = (sqrt((sqrt(y^2) - a)^2) - b)^2 + (sqrt(w^2 + v^2) - c)^2 - d^2
(w^2 + v^2 + (y±a±b)^2 + c^2 - d^2)^2 - 4c^2(w^2 + v^2)
4. (((x)z)(w)) = (sqrt((sqrt(x^2) - a)^2 + z^2) - b)^2 + (sqrt(w^2) - c)^2 - d^2
((x±a)^2 + z^2 + (w±c)^2 + b^2 - d^2)^2 - 4b^2((x±a)^2 + z^2)
5. (((x)z)(v)) = (sqrt((sqrt(x^2) - a)^2 + z^2) - b)^2 + (sqrt(v^2) - c)^2 - d^2
((x±a)^2 + z^2 + (v±c)^2 + b^2 - d^2)^2 - 4b^2((x±a)^2 + z^2)
6. (((y)z)(w)) = (sqrt((sqrt(y^2) - a)^2 + z^2) - b)^2 + (sqrt(w^2) - c)^2 - d^2
((y±a)^2 + z^2 + (w±c)^2 + b^2 - d^2)^2 - 4b^2((y±a)^2 + z^2)
7. (((y)z)(v)) = (sqrt((sqrt(y^2) - a)^2 + z^2) - b)^2 + (sqrt(v^2) - c)^2 - d^2
((y±a)^2 + z^2 + (v±c)^2 + b^2 - d^2)^2 - 4b^2((y±a)^2 + z^2)
8. (((xy))(v)) = (sqrt((sqrt(x^2 + y^2) - a)^2) - b)^2 + (sqrt(v^2) - c)^2 - d^2
(x^2 + y^2 + (v±c)^2 + (a±b)^2 - d^2)^2 - 4(a±b)^2(x^2 + y^2)
9. (((xy))(w)) = (sqrt((sqrt(x^2 + y^2) - a)^2) - b)^2 + (sqrt(w^2) - c)^2 - d^2
(x^2 + y^2 + (w±c)^2 + (a±b)^2 - d^2)^2 - 4(a±b)^2(x^2 + y^2)
10. (((xy)z)()) = (sqrt((sqrt(x^2 + y^2) - a)^2 + z^2) - b)^2 + (- c)^2 - d^2
(x^2 + y^2 + z^2 + a^2 - (b±d±ci)^2)^2 - 4a^2(x^2 + y^2)
(((II)I)(II)) will have 10 solutions in 3D, eight are real and two are complex. All solutions factor out into four torus intercepts:
((w^2 + v^2 + (z±b±ai)^2 + c^2 - d^2)^2 - 4c^2(w^2 + v^2))^4
((w^2 + v^2 + (x±a±b)^2 + c^2 - d^2)^2 - 4c^2(w^2 + v^2))^4
((w^2 + v^2 + (y±a±b)^2 + c^2 - d^2)^2 - 4c^2(w^2 + v^2))^4
(((x±a)^2 + z^2 + (w±c)^2 + b^2 - d^2)^2 - 4b^2((x±a)^2 + z^2))^4
(((x±a)^2 + z^2 + (v±c)^2 + b^2 - d^2)^2 - 4b^2((x±a)^2 + z^2))^4
(((y±a)^2 + z^2 + (w±c)^2 + b^2 - d^2)^2 - 4b^2((y±a)^2 + z^2))^4
(((y±a)^2 + z^2 + (v±c)^2 + b^2 - d^2)^2 - 4b^2((y±a)^2 + z^2))^4
((x^2 + y^2 + (v±c)^2 + (a±b)^2 - d^2)^2 - 4(a±b)^2(x^2 + y^2))^4
((x^2 + y^2 + (w±c)^2 + (a±b)^2 - d^2)^2 - 4(a±b)^2(x^2 + y^2))^4
((x^2 + y^2 + z^2 + a^2 - (b±d±ci)^2)^2 - 4a^2(x^2 + y^2))^4
Expanding and consolidating all 10 possible 3D intercepts of (((II)I)(II)) should produce full polynomial, however frightening that might be ....