First, I'll enumerate the 4D toratopes in product notation (at least, the product notation that's on the list of rotopes page, which could be nonsense for all I know

Tesseract - 1x1x1x1
Glome - 4
Cubinder - 2x1x1
Toracubinder - 2#3
Duocylinder - 2x2
Tiger - (2x2)#2
Spherinder - 3x1
Toraspherinder - 3#2
Torinder - (2#2)x1
Ditorus - (2#2)#2
Now, the first thing I notice is that those numbers don't all add up to 4. If # counted as -1, then everything apart from the tiger would - with the tiger being 5.
So, I'm imagining that the Cartesian product of two circles used in the tiger is really referring to the 2-frame duocylinder, and that 2D surface is being spherated by a circle to produce the 3-net, 4-bounding-space tiger.
Apart from hyperspheres, all closed toratopes must have a spheration operator at the lowest level of precedence (i.e. the "outermost" spheration operator). This is simple to show as all closed toratopes have a group around the entire shape and only hyperspheres have only 1s inside that group. So the dual of a toratope (i.e. turning it inside out) is given by reversing the operands of the outermost spheration operator:
dual toracubinder = 3#2 = toraspherinder
dual toraspherinder = 2#3 = toracubinder
dual tiger = 2#(2x2) = ?
dual ditorus = 2#(2#2) = ?
Now, what is the dual tiger and the dual ditorus? They must exist, since they are given by taking the tiger or ditorus and turning them inside-out (a la this, except in 4D). For the ditorus, if spheration is associative (it certainly isn't commutative), it could be self-dual, since associativity would mean (2#2)#2 = 2#(2#2).
However, I have no idea how to represent the dual tiger, 2#(2x2), in toratopic notation - this shape would be "putting a duocylinder at every point in a circle, oriented perpendicular to the circle". To me, this sounds like the shape would be 5D, but of course we are referring to the 2-frame duocylinder, so the resulting shape would be 3-frame. Then the question is, can the resulting shape be embedded in four dimensions without self intersections?
So, my questions:
1. Is everything I've said above correct?
2. Is the spheration operator associative (and thus the ditorus self-dual)?
3. How do you find A#B where B is not a hypersphere?
4. What is the dual of the tiger? If the tiger is self-dual, then why is 2#(2x2) equivalent to (2x2)#2?
5. If the dual of the tiger isn't a toratope, does this mean the set of toratopes is too restrictive?