Pentasphere (EntityTopic, 15)
From Hi.gher. Space
(Difference between revisions)
m |
m (fix) |
||
Line 22: | Line 22: | ||
<br clear="all"><br> | <br clear="all"><br> | ||
{{Polytera}} | {{Polytera}} | ||
- | {{Rotope Nav|46|47|48|IIII'<br> | + | {{Rotope Nav|46|47|48|IIII'<br>Tesseric pyramid|(IIIII)<br>Pentasphere|III'I<br>Cubic pyramid prism}} |
Revision as of 23:27, 18 June 2007
Geometry
Equations
- Variables:
r ⇒ radius of the pentasphere
- All points (x, y, z, w, φ) that lie on the surteron of a pentasphere will satisfy the following equation:
x2 + y2 + z2 + w2 + φ2 = r2
- The hypervolumes of a pentasphere are given by:
total edge length = 0
total surface area = 0
total surcell volume = 0
surteron bulk = 4π2r48-1
pentavolume = π2r58-1
- The realmic cross-sections (n) of a pentasphere are:
[!x,!y,!z,!w,!φ] ⇒ glome of radius (rcos(πn/2))