Bracketopic product (InstanceTopic, 5)
From Hi.gher. Space
(Difference between revisions)
(missed the opening sentence in my previous edit rearranging the order of the three bracketopic products) |
|||
(3 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
<[#ontology [kind topic] [cats Bracket_notation Construction]]> | <[#ontology [kind topic] [cats Bracket_notation Construction]]> | ||
- | The three '''bracketopic products''' are '' | + | The three '''bracketopic products''' are ''max'', ''rss'' and ''sum'', as defined in this page. They are mainly used in [[bracket notation]]. |
- | == RSS (Root-Sum-Square | + | == Max == |
+ | <blockquote>max(''a'',''b'') = {abs(''a''), abs(''a'') > abs(''b''); abs(''b''), abs(''a'') ≤ abs(''b'')}</blockquote> | ||
+ | |||
+ | Max is the ''square bracketopic product''. It will produce something rectangular in the dimensions concerned. | ||
+ | |||
+ | In bracket notation, max is represented with brackets <code>[ab]</code>. | ||
+ | |||
+ | == RSS (Root-Sum-Square) == | ||
<blockquote>rss(''a'',''b'') = (''a''<sup>2</sup> + ''b''<sup>2</sup>)<sup>2<sup>-1</sup></sup></blockquote> | <blockquote>rss(''a'',''b'') = (''a''<sup>2</sup> + ''b''<sup>2</sup>)<sup>2<sup>-1</sup></sup></blockquote> | ||
RSS is the ''circular bracketopic product''. It will produce something rounded in the dimensions concerned. | RSS is the ''circular bracketopic product''. It will produce something rounded in the dimensions concerned. | ||
- | == Sum | + | In bracket notation, rss is represented with parentheses <code>(ab)</code>. |
+ | |||
+ | == Sum == | ||
<blockquote>sum(''a'',''b'') = abs(''a'') + abs(''b'')</blockquote> | <blockquote>sum(''a'',''b'') = abs(''a'') + abs(''b'')</blockquote> | ||
- | Sum is the '' | + | Sum is the ''tegmal bracketopic product''. It will produce something tegmal, i.e. diamond-shaped, in the dimensions concerned. |
- | + | ||
- | + | ||
- | + | In bracket notation, sum is represented with chevrons <code><ab></code>. |
Latest revision as of 03:44, 11 April 2022
The three bracketopic products are max, rss and sum, as defined in this page. They are mainly used in bracket notation.
Max
max(a,b) = {abs(a), abs(a) > abs(b); abs(b), abs(a) ≤ abs(b)}
Max is the square bracketopic product. It will produce something rectangular in the dimensions concerned.
In bracket notation, max is represented with brackets [ab]
.
RSS (Root-Sum-Square)
rss(a,b) = (a2 + b2)2-1
RSS is the circular bracketopic product. It will produce something rounded in the dimensions concerned.
In bracket notation, rss is represented with parentheses (ab)
.
Sum
sum(a,b) = abs(a) + abs(b)
Sum is the tegmal bracketopic product. It will produce something tegmal, i.e. diamond-shaped, in the dimensions concerned.
In bracket notation, sum is represented with chevrons <ab>
.