Hypercube (EntityClass, 17)
From Hi.gher. Space
(Difference between revisions)
m |
|||
(12 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
- | > | + | <[#ontology [kind class] [cats Regular Polytope Rotatope Prism]]> |
+ | A '''hypercube''' is an n-dimensional [[polytope]] which is the dual of that dimension's [[cross polytope]]. They exist in all dimensions. They can be represented by the [[bracketopic string]] [a<sub>1</sub>a<sub>2</sub>...a<sub>n</sub>] or by the [[combined Coxeter-Dynkin string]] x4o(3o)*. | ||
- | {|style= | + | Under the [[elemental naming scheme]], hypercubes are denoted by the ''geo-'' prefix, meaning the classical element of "earth". |
- | |valign= | + | |
- | |valign= | + | == Number of hypercells in a hypercube == |
- | |valign= | + | |
+ | {|style="border: 1px solid; border-color:#808080; border-collapse: collapse;" cellpadding="2" width="100%" | ||
+ | |valign="top" width="20%" style="background-color:#ccccff; text-align:center;" colspan="2" rowspan="2"| | ||
+ | |valign="top" width="60%" style="background-color:#ccccff; text-align:center;" colspan="6"|'''Dimension of hypercube''' | ||
+ | |valign="middle" width="20%" style="background-color:#ccccff; text-align:center;" rowspan="2"|'''Formula''' | ||
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|2 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|3 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|4 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|5 |
|- | |- | ||
- | |valign= | + | |valign="middle" width="10%" style="background-color:#ccccff; text-align:center;" rowspan="7"|<[#embed [hash 10BDR1GFA3PDYCEP3YJRCCXV4D]]> |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|2 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|4 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|8 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|16 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|32 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|2<sup>n</sup> |
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|4 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|12 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|32 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|80 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n2<sup>n-1</sup> |
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|2 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|6 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|24 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|80 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n(n-1)2<sup>n-2</sup>2<sup>-1</sup> |
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|3 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|8 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|40 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n(n-1)(n-2)2<sup>n-3</sup>6<sup>-1</sup> |
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|4 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|10 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n(n-1)(n-2)(n-3)2<sup>n-4</sup>24<sup>-1</sup> |
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|5 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n(n-1)(n-2)(n-3)(n-4)2<sup>n-5</sup>120<sup>-1</sup> |
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|Sum |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|3 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|9 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|27 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|81 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|243 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|3<sup>n</sup> |
|} | |} | ||
- | Number of k-cubes in an n-cube: 2 | + | Number of k-cubes in an n-cube: 2<sup>n-k</sup>n!/(k!(n-k)!) |
{{Hypercubes| }} | {{Hypercubes| }} | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- |
Latest revision as of 14:08, 15 March 2014
A hypercube is an n-dimensional polytope which is the dual of that dimension's cross polytope. They exist in all dimensions. They can be represented by the bracketopic string [a1a2...an] or by the combined Coxeter-Dynkin string x4o(3o)*.
Under the elemental naming scheme, hypercubes are denoted by the geo- prefix, meaning the classical element of "earth".
Number of hypercells in a hypercube
Number of k-cubes in an n-cube: 2n-kn!/(k!(n-k)!)
Hypercubes |
point • digon • square • cube • geochoron • geoteron • geopeton |