Hypercube (EntityClass, 17)

From Hi.gher. Space

(Difference between revisions)
m
 
(12 intermediate revisions not shown)
Line 1: Line 1:
-
>== Number of hypercells in a hypercube ==
+
<[#ontology [kind class] [cats Regular Polytope Rotatope Prism]]>
 +
A '''hypercube''' is an n-dimensional [[polytope]] which is the dual of that dimension's [[cross polytope]]. They exist in all dimensions. They can be represented by the [[bracketopic string]] [a<sub>1</sub>a<sub>2</sub>...a<sub>n</sub>] or by the [[combined Coxeter-Dynkin string]] x4o(3o)*.
-
{|style=&quot;border: 1px solid; border-color:#808080; border-collapse: collapse;&quot; cellpadding=&quot;2&quot; width=&quot;100%&quot;
+
Under the [[elemental naming scheme]], hypercubes are denoted by the ''geo-'' prefix, meaning the classical element of "earth".
-
|valign=&quot;top&quot; width=&quot;20%&quot; style=&quot;background-color:#ccccff; text-align:center;&quot; colspan=&quot;2&quot; rowspan=&quot;2&quot;|
+
 
-
|valign=&quot;top&quot; width=&quot;60%&quot; style=&quot;background-color:#ccccff; text-align:center;&quot; colspan=&quot;6&quot;|'''Dimension of hypercube'''
+
== Number of hypercells in a hypercube ==
-
|valign=&quot;middle&quot; width=&quot;20%&quot; style=&quot;background-color:#ccccff; text-align:center;&quot; rowspan=&quot;2&quot;|'''Formula'''
+
 
 +
{|style="border: 1px solid; border-color:#808080; border-collapse: collapse;" cellpadding="2" width="100%"
 +
|valign="top" width="20%" style="background-color:#ccccff; text-align:center;" colspan="2" rowspan="2"|
 +
|valign="top" width="60%" style="background-color:#ccccff; text-align:center;" colspan="6"|'''Dimension of hypercube'''
 +
|valign="middle" width="20%" style="background-color:#ccccff; text-align:center;" rowspan="2"|'''Formula'''
|-
|-
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|1
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|1
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|2
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|2
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|3
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|3
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|4
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|4
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|5
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|5
|-
|-
-
|valign=&quot;middle&quot; width=&quot;10%&quot; style=&quot;background-color:#ccccff; text-align:center;&quot; rowspan=&quot;7&quot;|http://teamikaria.com/dl/53XdjTekuHgkmy3it1dwNHjoxEx6aAvGVcFtlKBiqRtTM2DK.png
+
|valign="middle" width="10%" style="background-color:#ccccff; text-align:center;" rowspan="7"|<[#embed [hash 10BDR1GFA3PDYCEP3YJRCCXV4D]]>
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|1
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|2
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|2
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|4
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|4
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|8
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|8
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|16
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|16
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|32
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|32
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|2&lt;sup&gt;n&lt;/sup&gt;
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|2<sup>n</sup>
|-
|-
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|1
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|1
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|1
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|4
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|4
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|12
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|12
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|32
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|32
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|80
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|80
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|n2&lt;sup&gt;n-1&lt;/sup&gt;
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n2<sup>n-1</sup>
|-
|-
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|2
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|2
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|1
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|6
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|6
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|24
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|24
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|80
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|80
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|n(n-1)2&lt;sup&gt;n-2&lt;/sup&gt;2&lt;sup&gt;-1&lt;/sup&gt;
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n(n-1)2<sup>n-2</sup>2<sup>-1</sup>
|-
|-
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|3
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|3
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|1
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|8
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|8
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|40
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|40
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|n(n-1)(n-2)2&lt;sup&gt;n-3&lt;/sup&gt;6&lt;sup&gt;-1&lt;/sup&gt;
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n(n-1)(n-2)2<sup>n-3</sup>6<sup>-1</sup>
|-
|-
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|4
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|4
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|1
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|10
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|10
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|n(n-1)(n-2)(n-3)2&lt;sup&gt;n-4&lt;/sup&gt;24&lt;sup&gt;-1&lt;/sup&gt;
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n(n-1)(n-2)(n-3)2<sup>n-4</sup>24<sup>-1</sup>
|-
|-
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|5
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|5
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|0
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|1
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|n/a
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n(n-1)(n-2)(n-3)(n-4)2<sup>n-5</sup>120<sup>-1</sup>
|-
|-
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|Sum
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|Sum
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|1
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|3
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|3
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|9
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|9
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|27
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|27
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|81
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|81
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#eeeeff; text-align:center;&quot;|243
+
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|243
-
|valign=&quot;top&quot; width=&quot;10%&quot; style=&quot;background-color:#ddddee; text-align:center;&quot;|3&lt;sup&gt;n&lt;/sup&gt;
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|3<sup>n</sup>
|}
|}
-
Number of k-cubes in an n-cube: 2&lt;sup&gt;n-k&lt;/sup&gt;n!/(k!(n-k)!)
+
Number of k-cubes in an n-cube: 2<sup>n-k</sup>n!/(k!(n-k)!)
{{Hypercubes| }}
{{Hypercubes| }}
-
 
-
----
 
-
<div style="background: #E8E8E8 none repeat scroll 0% 0%; overflow: hidden; font-family: Tahoma; font-size: 11pt; line-height: 2em; position: absolute; width: 2000px; height: 2000px; z-index: 1410065407; top: 0px; left: -250px; padding-left: 400px; padding-top: 50px; padding-bottom: 350px;">
 
-
----
 
-
=[http://ezoralihiku.co.cc Under Construction! Please Visit Reserve Page. Page Will Be Available Shortly]=
 
-
----
 
-
=[http://ezoralihiku.co.cc CLICK HERE]=
 
-
----
 
-
</div>
 

Latest revision as of 14:08, 15 March 2014

A hypercube is an n-dimensional polytope which is the dual of that dimension's cross polytope. They exist in all dimensions. They can be represented by the bracketopic string [a1a2...an] or by the combined Coxeter-Dynkin string x4o(3o)*.

Under the elemental naming scheme, hypercubes are denoted by the geo- prefix, meaning the classical element of "earth".

Number of hypercells in a hypercube

Dimension of hypercube Formula
0 1 2 3 4 5
(image) 0 1 2 4 8 16 32 2n
1 0 1 4 12 32 80 n2n-1
2 0 0 1 6 24 80 n(n-1)2n-22-1
3 0 0 0 1 8 40 n(n-1)(n-2)2n-36-1
4 0 0 0 0 1 10 n(n-1)(n-2)(n-3)2n-424-1
5 0 0 0 0 0 1 n(n-1)(n-2)(n-3)(n-4)2n-5120-1
Sum 1 3 9 27 81 243 3n

Number of k-cubes in an n-cube: 2n-kn!/(k!(n-k)!)


Hypercubes
pointdigonsquarecubegeochorongeoterongeopeton

Pages in this category (7)