Hypercube (EntityClass, 17)

From Hi.gher. Space

(Difference between revisions)
m
m
 
(29 intermediate revisions not shown)
Line 1: Line 1:
-
A '''hypercube''' is an [[n-dimensional]] analog to a [[cube]]. Hypercubes include the [[point (object)|point]], [[line (object)|line]], [[square]], [[cube]] and [[tesseract]].
+
<[#ontology [kind class] [cats Regular Polytope Rotatope Prism]]>
 +
A '''hypercube''' is an n-dimensional [[polytope]] which is the dual of that dimension's [[cross polytope]]. They exist in all dimensions. They can be represented by the [[bracketopic string]] [a<sub>1</sub>a<sub>2</sub>...a<sub>n</sub>] or by the [[combined Coxeter-Dynkin string]] x4o(3o)*.
-
== Equations ==
+
Under the [[elemental naming scheme]], hypercubes are denoted by the ''geo-'' prefix, meaning the classical element of "earth".
-
=== Number of hypercells in a hypercube ===
+
 
 +
== Number of hypercells in a hypercube ==
-
{|cellpadding="14" cellspacing="0" width="100%"
 
-
|valign="top" width="50%"|
 
{|style="border: 1px solid; border-color:#808080; border-collapse: collapse;" cellpadding="2" width="100%"
{|style="border: 1px solid; border-color:#808080; border-collapse: collapse;" cellpadding="2" width="100%"
|valign="top" width="20%" style="background-color:#ccccff; text-align:center;" colspan="2" rowspan="2"|
|valign="top" width="20%" style="background-color:#ccccff; text-align:center;" colspan="2" rowspan="2"|
Line 18: Line 18:
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|5
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|5
|-
|-
-
|valign="middle" width="10%" style="background-color:#ccccff; text-align:center;" rowspan="7"|http://invhost.com/share/dimhyc_rotated.png
+
|valign="middle" width="10%" style="background-color:#ccccff; text-align:center;" rowspan="7"|<[#embed [hash 10BDR1GFA3PDYCEP3YJRCCXV4D]]>
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|0
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|0
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1
Line 71: Line 71:
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1
-
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n/a
+
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n(n-1)(n-2)(n-3)(n-4)2<sup>n-5</sup>120<sup>-1</sup>
|-
|-
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|Sum
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|Sum
Line 82: Line 82:
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|3<sup>n</sup>
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|3<sup>n</sup>
|}
|}
-
Number of k-cubes in an n-cube: 2<sup>n-k</sup>n!/(k!(n-k!))
+
Number of k-cubes in an n-cube: 2<sup>n-k</sup>n!/(k!(n-k)!)
-
|}
+
-
[[Category:Shapes]]
+
{{Hypercubes| }}

Latest revision as of 14:08, 15 March 2014

A hypercube is an n-dimensional polytope which is the dual of that dimension's cross polytope. They exist in all dimensions. They can be represented by the bracketopic string [a1a2...an] or by the combined Coxeter-Dynkin string x4o(3o)*.

Under the elemental naming scheme, hypercubes are denoted by the geo- prefix, meaning the classical element of "earth".

Number of hypercells in a hypercube

Dimension of hypercube Formula
0 1 2 3 4 5
(image) 0 1 2 4 8 16 32 2n
1 0 1 4 12 32 80 n2n-1
2 0 0 1 6 24 80 n(n-1)2n-22-1
3 0 0 0 1 8 40 n(n-1)(n-2)2n-36-1
4 0 0 0 0 1 10 n(n-1)(n-2)(n-3)2n-424-1
5 0 0 0 0 0 1 n(n-1)(n-2)(n-3)(n-4)2n-5120-1
Sum 1 3 9 27 81 243 3n

Number of k-cubes in an n-cube: 2n-kn!/(k!(n-k)!)


Hypercubes
pointdigonsquarecubegeochorongeoterongeopeton

Pages in this category (7)