Hypercube (EntityClass, 17)
From Hi.gher. Space
(Difference between revisions)
(add long-awaited summary) |
m (K6.4 upgrade: img -> embed) |
||
Line 18: | Line 18: | ||
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|5 | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|5 | ||
|- | |- | ||
- | |valign="middle" width="10%" style="background-color:#ccccff; text-align:center;" rowspan="7"|<[# | + | |valign="middle" width="10%" style="background-color:#ccccff; text-align:center;" rowspan="7"|<[#embed [hash 10BDR1GFA3PDYCEP3YJRCCXV4D]]> |
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|0 | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|0 | ||
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
Revision as of 20:44, 11 February 2014
A hypercube is an n-dimensional polytope which is the dual of that dimension's cross polytope. They exist in all dimensions. They can be represented by the bracketopic string [a1a2...an] or by the combined Coxeter-Dynkin string x4o(3o)*.
Under the Tamfang naming scheme, hypercubes are denoted by the geo- prefix, meaning the classical element of "earth".
Number of hypercells in a hypercube
Number of k-cubes in an n-cube: 2n-kn!/(k!(n-k)!)
Hypercubes |
point • digon • square • cube • geochoron • geoteron • geopeton |