Tesserinder (EntityTopic, 13)

From Hi.gher. Space

(Difference between revisions)
(created page)
m (fix)
Line 1: Line 1:
-
{{Shape|Tesserinder|''No image''|5|?, ?, ?, ?, ?|0|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Cylinder|E]][[Cubinder|E]]E|2111 (xy)zwφ|N/A|N/A|N/A|115}}
+
{{Shape|Tesserinder|''No image''|5|?, ?, ?, ?, ?|0|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Cylinder|E]][[Cubinder|E]]E|2111 (xy)zwφ|N/A|N/A|N/A|119}}
== Geometry ==
== Geometry ==
Line 34: Line 34:
{{Polytera}}
{{Polytera}}
-
{{Rotope Nav|114|115|116|(I'(III))<br>''Unknown shape''|(II)III<br>Tesserinder|(II)II'<br>Cubindric pyramid}}
+
{{Rotope Nav|117|118|119|(I'((II)I))<br>''Unknown shape''|(II)III<br>Tesserinder|(II)II'<br>Cubindric pyramid}}

Revision as of 19:40, 17 June 2007

Template:Shape

Geometry

A tesserinder is a special case of the prism where the base is a cubinder.

Equations

  • Variables:
r ⇒ radius of the tesserinder
a ⇒ height of the tesserinder along z-axis
b ⇒ tridth of the tesserinder along w-axis
c ⇒ pentalength of the tesserinder along φ-axis
  • All points (x, y, z, w, φ) that lie on the surteron of a tesserinder will satisfy the following equations:
x2 + y2 = r2
abs(z) ≤ a
abs(w) ≤ b
abs(φ) ≤ c
   -- or --
x2 + y2 < r2
abs(z) = a
abs(w) = b
abs(φ) = c
total edge length = Unknown
total surface area = Unknown
surcell volume = Unknown
surteron bulk = Unknown
pentavolume = πr2abc
Unknown

Template:Polytera Template:Rotope Nav