Hypercube (EntityClass, 17)
From Hi.gher. Space
(Difference between revisions)
Line 1: | Line 1: | ||
- | + | == Number of hypercells in a hypercube == | |
- | {|style= | + | {|style="border: 1px solid; border-color:#808080; border-collapse: collapse;" cellpadding="2" width="100%" |
- | |valign= | + | |valign="top" width="20%" style="background-color:#ccccff; text-align:center;" colspan="2" rowspan="2"| |
- | |valign= | + | |valign="top" width="60%" style="background-color:#ccccff; text-align:center;" colspan="6"|'''Dimension of hypercube''' |
- | |valign= | + | |valign="middle" width="20%" style="background-color:#ccccff; text-align:center;" rowspan="2"|'''Formula''' |
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|2 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|3 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|4 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|5 |
|- | |- | ||
- | |valign= | + | |valign="middle" width="10%" style="background-color:#ccccff; text-align:center;" rowspan="7"|http://teamikaria.com/dl/53XdjTekuHgkmy3it1dwNHjoxEx6aAvGVcFtlKBiqRtTM2DK.png |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|2 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|4 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|8 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|16 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|32 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|2<sup>n</sup> |
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|4 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|12 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|32 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|80 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n2<sup>n-1</sup> |
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|2 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|6 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|24 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|80 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n(n-1)2<sup>n-2</sup>2<sup>-1</sup> |
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|3 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|8 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|40 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n(n-1)(n-2)2<sup>n-3</sup>6<sup>-1</sup> |
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|4 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|10 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n(n-1)(n-2)(n-3)2<sup>n-4</sup>24<sup>-1</sup> |
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|5 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|0 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|n/a |
|- | |- | ||
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|Sum |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|3 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|9 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|27 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|81 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|243 |
- | |valign= | + | |valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|3<sup>n</sup> |
|} | |} | ||
- | Number of k-cubes in an n-cube: 2 | + | Number of k-cubes in an n-cube: 2<sup>n-k</sup>n!/(k!(n-k)!) |
{{Hypercubes| }} | {{Hypercubes| }} | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- |
Revision as of 23:09, 19 November 2010
Number of hypercells in a hypercube
Dimension of hypercube | Formula | |||||||
0 | 1 | 2 | 3 | 4 | 5 | |||
http://teamikaria.com/dl/53XdjTekuHgkmy3it1dwNHjoxEx6aAvGVcFtlKBiqRtTM2DK.png | 0 | 1 | 2 | 4 | 8 | 16 | 32 | 2n |
1 | 0 | 1 | 4 | 12 | 32 | 80 | n2n-1 | |
2 | 0 | 0 | 1 | 6 | 24 | 80 | n(n-1)2n-22-1 | |
3 | 0 | 0 | 0 | 1 | 8 | 40 | n(n-1)(n-2)2n-36-1 | |
4 | 0 | 0 | 0 | 0 | 1 | 10 | n(n-1)(n-2)(n-3)2n-424-1 | |
5 | 0 | 0 | 0 | 0 | 0 | 1 | n/a | |
Sum | 1 | 3 | 9 | 27 | 81 | 243 | 3n |
Number of k-cubes in an n-cube: 2n-kn!/(k!(n-k)!)
Hypercubes |
point • digon • square • cube • geochoron • geoteron • geopeton |