Tesseric pyramid (EntityTopic, 11)
From Hi.gher. Space
(Difference between revisions)
m |
m |
||
Line 6: | Line 6: | ||
| ssc=[xyzw]P | | ssc=[xyzw]P | ||
| ssc2=&Ke1 | | ssc2=&Ke1 | ||
- | | extra={{STS | + | | extra={{STS Tapertope |
- | | | + | | order=4, 1 |
- | | notation=1111<sup>1 | + | | notation=[1111]<sup>1</sup> |
- | | index= | + | | index=41 |
}}}} | }}}} | ||
Line 28: | Line 28: | ||
{{Pentashapes}} | {{Pentashapes}} | ||
- | {{ | + | {{Tapertope Nav|40|41|42|[211]<sup>1</sup><br>Cubindrone|[1111]<sup>1</sup><br>Tesseric pyramid|31<sup>1</sup><br>Sphentrianglinder|tera}} |
Revision as of 15:17, 26 November 2009
A tesseric pyramid is a special case of the pyramid where the base is a tesseract.
Equations
- Variables:
l ⇒ length of the edges of the tesseric pyramid
- All points (x, y, z, w, φ) that lie on the surteron of a tesseric pyramid will satisfy the following equation:
Unknown
- The hypervolumes of a tesseric pyramid are given by:
Unknown
- The flunic cross-sections (n) of a tesseric pyramid are:
Unknown
Notable Pentashapes | |
Flat: | pyroteron • aeroteron • geoteron |
Curved: | tritorus • pentasphere • glone • cylspherinder • tesserinder |
40. [211]1 Cubindrone | 41. [1111]1 Tesseric pyramid | 42. 311 Sphentrianglinder |
List of tapertopes |