Pentasphere (EntityTopic, 15)

From Hi.gher. Space

(Difference between revisions)
m (fix)
m
Line 11: Line 11:
*The [[hypervolume]]s of a pentasphere are given by:
*The [[hypervolume]]s of a pentasphere are given by:
<blockquote>
<blockquote>
-
surteron bulk 4π<sup>2</sup>r<sup>4</sup>8<sup>-1</sup><br>
+
surteron bulk = 4π<sup>2</sup>r<sup>4</sup>8<sup>-1</sup><br>
-
pentavolume π<sup>2</sup>r<sup>5</sup>8<sup>-1</sup>
+
pentavolume = π<sup>2</sup>r<sup>5</sup>8<sup>-1</sup>
</blockquote>
</blockquote>

Revision as of 15:54, 17 June 2007

Template:Shape

Geometry

Equations

  • Variables:
r ⇒ radius of the pentasphere
  • All points (x, y, z, w, φ) that lie on the surteron of a pentasphere will satisfy the following equation:
x2 + y2 + z2 + w2 + φ2 = r2
surteron bulk = 4π2r48-1
pentavolume = π2r58-1
[!x,!y,!z,!w,!φ] ⇒ glome of radius (rcos(πn/2))



Template:Polytera Template:Rotope Nav