Torisphere (EntityTopic, 11)

From Hi.gher. Space

(Difference between revisions)
m (rm spam)
m (upgrade)
Line 1: Line 1:
-
{{Shape|Toraspherinder|''No image''|4|1, 0, 0, 0|1|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Sphere|L]]Q|(31) ((x,y,z),w)|N/A|N/A|N/A}}
+
{{Shape|Toraspherinder|''No image''|4|1, 0, 0, 0|1|N/A|N/A|[[Line (object)|E]][[Circle|L]][[Sphere|L]]Q|(31) ((x,y,z),w)|N/A|N/A|N/A|22}}
===Geometry===
===Geometry===
Line 28: Line 28:
<br clear="all"><br>
<br clear="all"><br>
{{Polychora}}
{{Polychora}}
-
{{Rotopes}}
+
{{Rotope Nav|21|22|23|(III)'<br>Sphone|((III)I)<br>Toraspherinder|I'II<br>Triangular diprism}}

Revision as of 12:38, 17 June 2007

Template:Shape

Geometry

The toraspherinder is a special case of a surcell of revolution where the base is a sphere.

Equations

  • Variables:
r ⇒ minor radius of the toraspherinder
R ⇒ major radius of the toraspherinder
  • All points (x, y, z, w) that lie on the surcell of a toraspherinder will satisfy the following equation:(?)
(sqrt(x2+y2+z2)-R)2 + w2 = r2
  • The parametric equations are:
x = r cos a cos b cos c + R cos b cos c
y = r cos a cos b sin c + R cos b sin c
z = r cos a sin b + R sin b
w = r sin a
total edge length = 0
total surface area = 0
surcell volume = 8π2Rr2
bulk = 8π2Rr33-1
Unknown



Template:Polychora Template:Rotope Nav