Hypercube (EntityClass, 17)

From Hi.gher. Space

(Difference between revisions)
m
m (invhost.com -> fusion-global.org)
Line 18: Line 18:
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|5
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|5
|-
|-
-
|valign="middle" width="10%" style="background-color:#ccccff; text-align:center;" rowspan="7"|http://invhost.com/share/dimhyc_rotated.png
+
|valign="middle" width="10%" style="background-color:#ccccff; text-align:center;" rowspan="7"|http://fusion-global.org/share/dimhyc_rotated.png
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|0
|valign="top" width="10%" style="background-color:#ddddee; text-align:center;"|0
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1
|valign="top" width="10%" style="background-color:#eeeeff; text-align:center;"|1

Revision as of 20:53, 15 June 2007

A hypercube is an n-dimensional analog to a cube. Hypercubes include the point, line, square, cube and tesseract.

Equations

Number of hypercells in a hypercube

Dimension of hypercube Formula
0 1 2 3 4 5
http://fusion-global.org/share/dimhyc_rotated.png 0 1 2 4 8 16 32 2n
1 0 1 4 12 32 80 n2n-1
2 0 0 1 6 24 80 n(n-1)2n-22-1
3 0 0 0 1 8 40 n(n-1)(n-2)2n-36-1
4 0 0 0 0 1 10 n(n-1)(n-2)(n-3)2n-424-1
5 0 0 0 0 0 1 n/a
Sum 1 3 9 27 81 243 3n

Number of k-cubes in an n-cube: 2n-kn!/(k!(n-k!))

Pages in this category (7)