This is a section from the Hopf fibration article on Wikipedia that I and Tom Ruen wrote that has since been deleted due to "lack of sources" and/or "original work". The original article can be found here https://en.wikipedia.org/wiki/User:Cloudswrest/Regular_polychoric_rings
Three of the six regular 4-polytopes, the 8-cell (tesseract), 24-cell, and 120-cell – can each be partitioned into disjoint great circle (regular polygon) rings of cells forming discrete Hopf fibrations of these polytopes. The tesseract partitions into two interlocking rings of four cubes each. The 24-cell partitions into four rings of six octahedra each. The 120-cell partitions into twelve rings of ten dodecahedra each. The 24-cell also contains a fibration of six rings of four octahedra each stacked end to end at their vertices.
The 600-cell partitions into 20 rings of 30 tetrahedra each in a very interesting, quasi-periodic chain called the Boerdijk–Coxeter helix. When superimposed onto the 3-sphere curvature it becomes periodic with a period of 10 vertices, encompassing all 30 cells. Note, the "fiber" in this case is the center axis of the Boerdijk–Coxeter helix, not the decagon edge, which is the same as the 12-10 fibration of the dual 120-cell.
One ring in the 120-cell
One ring in the 600-cell