For example, take a polytope like x4o3x. We could look at it from the symmetry point of view, as a Wythoff mirror construction, or we could look at it as a bunch of Stott expansions, e.g., o4o3o -> x4o3o -> x4o3x. We can also look at it from Wendy's view as an oblique coordinate system, where we can insert arbitrary numbers between the nodes, e.g., f4o3x and so on.
Fundamentally, though, A4B3C can be thought of as a series of 3 essentially independent Stott expansions based on .4.3. symmetry. In particular, if we consider the "basis polytopes" of .4.3. symmetry as x4o3o, o4x3o, o4o3x, respectively, then a symbol like x4o3x is essentially the Minkowski sum of two polytopes, namely x4o3o and o4o3x. A polytope like f4o3x is the Minkowski sum of a f-scaled x4o3o (IOW f4o3o) and a unit o4o3x.
This is all probably quite obvious and already well-known, of course.
But what this view of Stott expansions as Minkowski sums gives us, is a way to create new polytopes that are not necessarily describable with a single CD symbol, or indeed, any CD symbol at all. Partial Stott expansions can be easily described as a Minkowski sum of a (full-dimensioned) polytope with a subdimensional polytope. For example, consider a Johnson solid like J43 (elongated pentagonal gyrobirotunda). There is no CD symbol that could describe J43 (though we could write it as a tower of 2D CD symbols, I suppose), but it can be neatly described as the Minkowski sum of o5x3o and a line segment. Or J28 (square orthobicupola): it can be described as the Minkowski sum of an octahedron and a square.
I'm not 100% sure but it may be possible to construct certain EKF polytopes as Minkowski sums of non-convex polytopes too. (Maybe some of you would like to check this?

The nice thing about the Minkowski sum is that it's defined for arbitrary polytopes (even non-convex ones). So we can have an "algebra" of polytopes, say we start with the regular polytopes (including subdimensional ones), and then arbitrarily mix-and-match them together with Minkowski sums. Could make for a fun imaginary world of polytopes where "atoms" are polytopes, and "chemical reactions" are Minkowski sums.


One specific point of interest (among many!) is the ability to precisely define an omnitruncate for a larger class of polytopes than just the uniforms. For example, if we start with J12 (triangular bipyramid), and consider its axes of symmetry, we could construct the basis set { J12, vertical line segment, dual triangle to J12's equator }, and thus construct its "omnitruncate analog" as the Minkowski sum of all 3 basis polytopes, which produces J35 (elongated triangular orthobicupola).