Starting from a circle, here are all possible ways to bisecting rotate and non-intersecting sweep a toratope into n+1 dimensions. The implicit definition is shown with a fiber bundle sequence and toratopic notation, which defines the equation. By squeezing all of the (),√,+,-,²,R,x,y,z math symbols out, we get an abstract representation of the diameter structure. And, by simplifying a complex mathematical idea into an easy to read format, we can peer into deeper truths of the geometry. In studying the unique differences between the hypertoric rings, we only care about four things:
1. How many dimensions?
2. How many diameters?
3. How are the dimensions distributed among the diameters?
4. What is the combinatoric nesting of the diameters?
In this case, dimensions are defined by a capitol ‘I’ , and diameters are defined by a pair of parentheses ‘()’, with at least two dimensions inside ‘(II)’. The n-spheres have all available dimensions contained within just one diameter, and take on the form (II), (III), (IIII), (IIIII), etc. Nested diameters (one inside the other), ‘((II)I)’ defines toroidal shapes, the donut ring-like objects with one or more holes. More nested circles means more diameters, and more holes: ((II)I) , ((II)(II)) , (((II)I)(II)) , (((II)I)(II)I)), etc.
Toratopic notation follows the discrete combinatoric integer sequence A000669, rooted trees with nested leaves. Number of possible shapes per dimension is:
1D - 1
2D - 1
3D - 2
4D - 5
5D - 12
6D - 33
7D - 90
8D - 261
9D - 766
10D - 2312
How to rotate into N+1
------------------------
In notation form, for a circle with a dimension marked as ‘x’ : (xI), replace x with,
• Bisecting Rotate : x = II
- (xI) ---> (III)
• Non-Intersecting Sweep : x = (II)
- (xI) ---> ((II)I)
In mathematical form, for a circle defined as x²+y² - r², replace x² or y² with,
• Bisecting Rotate Around x : y² = y²+z²
- x²+y² -r² ---> x²+y²+z² -r²
• Non-Intersecting Sweep Around y : x² = (√(x²+z²)-R)²
- x²+y² -r² ---> (√(x²+z²)-R)² +y² -r²
Terms of the Fiber Bundles:
----------------------------
Sn = n-sphere
Tn = n-torus
Cn = Clifford flat n-torus, Tn embedded into R2n
- • C2=[S1*S1] = T2 embedded in R4
• C3=[S1*S1*S1 = T3 embedded in R6
• C4=[S1*S1*S1*S1] = T4 embedded in R8
• C5=[S1*S1*S1*S1]*S1 = T5 embedded in R10
[Sm*Sn] = Clifford flat (m+n)-manifold, made by embedding SmxSn or SnxSm into R(m+n+2)
- • [S2*S1] = S2xS1 or S1xS2 embedded in R5
• [S2*S2] = S2xS2 embedded in R6
• [S3*S1] = S3xS1 or S1xS3 embedded in R6
• [S3*S2] = S3xS2 or S2xS3 embedded in R7
[(SmxSn)*Sk] = Clifford flat (m+n+k)-manifold, made by surface product of SmxSn and Sk (helps define some surfaces)
1 Compact 1-manifold in R2 ; xy
Degree-2 surface of genus-0
-----------------------------
(II) - S1 : x²+y² = r²
2 Compact 2-manifolds in R3 ; xyz
Degree-2 surface of genus-0
----------------------------
(III) - S2 : x²+y²+z² = r²
Degree-4 of genus-1
-------------------
((II)I) - T2 : (√(x²+y²)-R)² +z² = r²
5 Compact 3-manifolds in R4 ; xyzw
Degree-2 surface of genus-0
-----------------------------
(IIII) - S3 : x²+y²+z²+w² = r²
Degree-4 of genus-1
-------------------
((II)II) - S2xS1 : (√(x²+y²)-R)² +z²+w² = r²
((III)I) - S1xS2 : (√(x²+y²+z²)-R)² +w² = r²
Degree-8 of genus-2
-------------------
((II)(II)) - S1xC2 : (√(x²+y²)-R1a)² + (√(z²+w²)-R1b)² = Rmin²
(((II)I)I) - T3 : (√((√(x²+y²)-R1)² +z²)-R2)² +w² = Rmin²
12 Compact 4-manifolds in R5 ; xyzwv
Degree-2 surface of genus-0
----------------------------
(IIIII) - S4 : x²+y²+z²+w²+v² = r²
Degree-4 of genus-1
--------------------
((II)III) - S3xS1 : (√(x²+y²)-R)² +z²+w²+v² = r²
((III)II) - S2xS2 : (√(x²+y²+z²)-R)² +w²+v² = r²
((IIII)I) - S1xS3 : (√(x²+y²+z²+w²)-R)² +v² = r²
Degree-8 of genus-2
--------------------
(((II)I)II) - S2xT2 : (√((√(x²+y²)-R1)² +z²)-R2)² +w²+v² = Rmin²
(((II)II)I) - S1xS2xS1 : (√((√(x²+y²)-R1)² +z²+w²)-R2)² +v² = Rmin²
(((III)I)I) - T2xS2 : (√((√(x²+y²+z²)-R1)² +w²)-R2)² +v² = Rmin²
-
((II)(II)I) - S2xC2 : (√(x²+y²)-R1a)² + (√(z²+w²)-R1b)² +v² = Rmin²
((III)(II)) - S1x[S2*S1] : (√(x²+y²+z²)-R1a)² + (√(w²+v²)-R1b)² = Rmin²
Degree-16 of genus-3
----------------------
(((II)I)(II)) - S1xC2xS1 : (√((√(x²+y²)-R1a)²+z²)-R2)² + (√(w²+v²)-R1b)² = Rmin²
(((II)(II))I) - T2xC2 : (√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)²)-R2)² +v² = Rmin²
((((II)I)I)I) - T4 : (√((√((√(x²+y²)-R1)² +z²)-R2)² +w²)-R3)² +v² = Rmin²
33 Compact 5-manifolds in R6 ; xyzwvu
Degree-2 surface of genus-0
----------------------------
(IIIIII) - S5 : x²+y²+z²+w²+v²+u² = r²
Degree-4 of genus-1
--------------------
((II)IIII) - S4xS1 : (√(x²+y²)-R)² +z²+w²+v²+u² = r²
((III)III) - S3xS2 : (√(x²+y²+z²)-R)² +w²+v²+u² = r²
((IIII)II) - S2xS3 : (√(x²+y²+z²+w²)-R)² +v²+u² = r²
((IIIII)I) - S1xS4 : (√(x²+y²+z²+w²+v²)-R)² +u² = r²
Degree-8 of genus-2
---------------------
(((II)I)III) - S3xT2 : (√((√(x²+y²)-R1)² +z²)-R2)² +w²+v²+u² = Rmin²
(((II)III)I) - S1xS3xS1 : (√((√(x²+y²)-R1)² +z²+w²+v²)-R2)² +u² = Rmin²
(((IIII)I)I) - T2xS3 : (√((√(x²+y²+z²+w²)-R1)² +v²)-R2)² +u² = Rmin²
-
(((II)II)II) - S2xS2xS1 : (√((√(x²+y²)-R1)² +z²+w²)-R2)² +v²+u² = Rmin²
(((III)I)II) - S2xS1xS2 : (√((√(x²+y²+z²)-R1)² +w²)-R2)² +v²+u² = Rmin²
(((III)II)I) - S1xS2xS2 : (√((√(x²+y²+z²)-R1)² +w²+v²)-R2)² +u² = Rmin²
-
((II)(II)II) - S3xC2 : (√(x²+y²)-R1a)² + (√(z²+w²)-R1b)² +v²+u² = Rmin²
((III)(II)I) - S2x[S2*S1] : (√(x²+y²+z²)-R1a)² + (√(w²+v²)-R1b)² +u² = Rmin²
((III)(III)) - S1x[S2*S2] : (√(x²+y²+z²)-R1a)² + (√(w²+v²+u²)-R1b)² = Rmin²
((IIII)(II)) - S1x[S3*S1] : (√(x²+y²z²+w²)-R1a)² + (√(v²+u²)-R1b)² = Rmin²
Degree-16 of genus-3
----------------------
((((II)I)I)II) - S2xT3 : (√((√((√(x²+y²)-R1)² +z²)-R2)² +w²)-R3)² +v²+u² = Rmin²
((((II)I)II)I) - S1xS2xT2 : (√((√((√(x²+y²)-R1)² +z²)-R2)² +w²+v²)-R3)² +u² = Rmin²
((((II)II)I)I) - T2xS2xS1 : (√((√((√(x²+y²)-R1)² +z²+w²)-R2)² +v²)-R3)² +u² = Rmin²
((((III)I)I)I) - T3xS2 : (√((√((√(x²+y²+z²)-R1)² +w²)-R2)² +v²)-R3)² +u² = Rmin²
-
((II)(II)(II)) - S2xC3 : (√(x²+y²)-R1a)² + (√(z²+w²)-R1b)² + (√(v²+u²)-R1c)² = Rmin²
(((II)I)(II)I) - S2xC2xS1 : (√((√(x²+y²)-R1a)²+z²)-R2)² + (√(w²+v²)-R1b)² +u² = Rmin²
(((II)(II)I)I) - S1xS2xC2 : (√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)² +v²)-R2)² +u² = Rmin²
(((II)(II))II) - S2xS1xC2 : (√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)²)-R2)² +v²+u² = Rmin²
(((III)(II))I) - T2x[S2*S1] : (√((√(x²+y²+z²)-R1a)² + (√(w²+v²)-R1b)²)-R2)² +u² = Rmin²
-
(((II)I)(III)) - S1x[T2*S2] : (√((√(x²+y²)-R1a)²+z²)-R2)² + (√(w²+v²+u²)-R1b)² = Rmin²
(((II)II)(II)) - S1x[S2*S1]xS1 : (√((√(x²+y²)-R1a)²+z²+w²)-R2)² + (√(v²+u²)-R1b)² = Rmin²
(((III)I)(II)) - S1xC2xS2 : (√((√(x²+y²+z²)-R1a)²+w²)-R2)² + (√(v²+u²)-R1b)² = Rmin²
Degree-32 of genus-4
----------------------
(((II)(II))(II)) - T2xC3 : (√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)²)-R2)² + (√(v²+u²)-R1c)² = Rmin²
(((II)I)((II)I)) - S1xC2xC2 : (√((√(x²+y²)-R1a)²+z²)-R2a)² + (√((√(w²+v²)-R1b)²+u²)-R2b)² = Rmin²
-
((((II)I)I)(II)) - S1xC2xT2 : (√((√((√(x²+y²)-R1a)²+z²)-R2)²+w²)-R3)² + (√(v²+u²)-R1b)² = Rmin²
((((II)I)(II))I) - T2xC2xS1 : (√((√((√(x²+y²)-R1a)²+z²)-R2)² + (√(w²+v²)-R1b)²)-R3)² +u² = Rmin²
((((II)(II))I)I) - T3xC2 : (√((√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)²)-R2)² +v²)-R3)² +u² = Rmin²
(((((II)I)I)I)I) - T5 : (√((√((√((√(x²+y²)-R1)² +z²)-R2)² +w²)-R3)² +v²)-R4)² +u² = Rmin²
90 Compact 6-manifolds in R7 ; xyzwvut
Degree-2 surface of genus-0
----------------------------
(IIIIIII) - S6 : x²+y²+z²+w²+v²+u²+t² = r²
Degree-4 of genus-1
--------------------
((II)IIIII) - S5xS1 : (√(x²+y²)-R)² +z²+w²+v²+u²+t² = r²
((III)IIII) - S4xS2 : (√(x²+y²+z²)-R)² +w²+v²+u²+t² = r²
((IIII)III) - S3xS3 : (√(x²+y²+z²+w²)-R)² +v²+u²+t² = r²
((IIIII)II) - S2xS4 : (√(x²+y²+z²+w²+v²)-R)² +u²+t² = r²
((IIIIII)I) - S1xS5 : (√(x²+y²+z²+w²+v²+u²)-R)² +t² = r²
Degree-8 of genus-2
---------------------
(((II)I)IIII) - S4xS1xS1 : (√((√(x²+y²)-R1)² +z²)-R2)² +w²+v²+u²+t² = Rmin²
(((II)II)III) - S3xS2xS1 : (√((√(x²+y²)-R1)² +z²+w²)-R2)² +v²+u²+t² = Rmin²
(((II)III)II) - S2xS3xS1 : (√((√(x²+y²)-R1)² +z²+w²+v²)-R2)² +u²+t² = Rmin²
(((II)IIII)I) - S1xS4xS1 : (√((√(x²+y²)-R1)² +z²+w²+v²+u²)-R2)² +t² = Rmin²
(((III)III)I) - S1xS3xS2 : (√((√(x²+y²+z²)-R1)² +w²+v²+u²)-R2)² +t² = Rmin²
(((IIII)II)I) - S1xS2xS3 : (√((√(x²+y²+z²+w²)-R1)² +v²+u²)-R2)² +t² = Rmin²
(((IIIII)I)I) - S1xS1xS4 : (√((√(x²+y²+z²+w²+v²)-R1)² +u²)-R2)² +t² = Rmin²
-
(((III)I)III) - S3xS1xS2 : (√((√(x²+y²+z²)-R1)² +w²)-R2)² +v²+u²+t² = Rmin²
(((III)II)II) - S2xS2xS2 : (√((√(x²+y²+z²)-R1)² +w²+v²)-R2)² +u²+t² = Rmin²
(((IIII)I)II) - S2xS1xS3 : (√((√(x²+y²+z²+w²)-R1)² +v²)-R2)² +u²+t² = Rmin²
-------------
((II)(II)III) - S4x[S1*S1] : (√(x²+y²)-R1a)² + (√(z²+w²)-R1b)² +v²+u²+t² = Rmin²
((III)(II)II) - S3x[S2*S1] : (√(x²+y²+z²)-R1a)² + (√(w²+v²)-R1b)² +u²+t² = Rmin²
((III)(III)I) - S2x[S2*S2] : (√(x²+y²+z²)-R1a)² + (√(w²+v²+u²)-R1b)² +t² = Rmin²
((IIII)(II)I) - S2x[S3*S1] : (√(x²+y²+z²+w²)-R1a)² + (√(v²+u²)-R1b)² +t² = Rmin²
((IIII)(III)) - S1x[S3*S2] : (√(x²+y²+z²+w²)-R1a)² + (√(v²+u²+t²)-R1b)² = Rmin²
((IIIII)(II)) - S1x[S4*S1] : (√(x²+y²+z²+w²+v²)-R1a)² + (√(u²+t²)-R1b)² = Rmin²
Degree-16 of genus-3
----------------------
((((II)I)I)III) - S3xT3 : (√((√((√(x²+y²)-R1)² +z²)-R2)² +w²)-R3)² +v²+u²+t² = Rmin²
((((II)I)III)I) - S1xS3xT2 : (√((√((√(x²+y²)-R1)² +z²)-R2)² +w²+v²+u²)-R3)² +t² = Rmin²
((((II)III)I)I) - T2xS3xS1 : (√((√((√(x²+y²)-R1)² +z²+w²+v²)-R2)² +u²)-R3)² +t² = Rmin²
((((IIII)I)I)I) - T3xS3 : (√((√((√(x²+y²+z²+w²)-R1)² +v²)-R2)² +u²)-R3)² +t² = Rmin²
-
((((II)II)II)I) - S1xS2xS2xS1 : (√((√((√(x²+y²)-R1)² +z²+w²)-R2)² +v²+u²)-R3)² +t² = Rmin²
((((II)II)I)II) - S2xS1xS2xS1 : (√((√((√(x²+y²)-R1)² +z²+w²)-R2)² +v²)-R3)² +u²+t² = Rmin²
((((II)I)II)II) - S2xS2xT2 : (√((√((√(x²+y²)-R1)² +z²)-R2)² +w²+v²)-R3)² +u²+t² = Rmin²
-
((((III)I)I)II) - S2xT2xS2 : (√((√((√(x²+y²+z²)-R1)² +w²)-R2)² +v²)-R3)² +u²+t² = Rmin²
((((III)I)II)I) - S1xS2xS1xS2 : (√((√((√(x²+y²+z²)-R1)² +w²)-R2)² +v²+u²)-R3)² +t² = Rmin²
((((III)II)I)I) - T2xS2xS2 : (√((√((√(x²+y²+z²)-R1)² +w²+v²)-R2)² +u²)-R3)² +t² = Rmin²
---------------
((II)(II)(II)I) - S3xC3 : (√(x²+y²)-R1a)² + (√(z²+w²)-R1b)² + (√(v²+u²)-R1c)² +t² = Rmin²
((III)(II)(II)) - S2x[S2*S1*S1] : (√(x²+y²+z²)-R1a)² + (√(w²+v²)-R1b)² + (√(u²+t²)-R1c)² = Rmin²
-
(((II)I)(II)II) - S3xC2xS1 : (√((√(x²+y²)-R1a)²+z²)-R2)² + (√(w²+v²)-R1b)² +u²+t² = Rmin²
(((II)I)(III)I) - S2x[T2*S2] : (√((√(x²+y²)-R1a)²+z²)-R2)² + (√(w²+v²+u²)-R1b)² +t² = Rmin²
(((II)II)(II)I) - S2x[S2*S1]xS1 : (√((√(x²+y²)-R1a)²+z²+w²)-R2)² + (√(v²+u²)-R1b)² +t² = Rmin²
(((III)I)(II)I) - S2xC2xS2 : (√((√(x²+y²+z²)-R1a)²+w²)-R2)² + (√(v²+u²)-R1b)² +t² = Rmin²
-
(((III)I)(III)) - S1x[(S1xS2)*S2] : (√((√(x²+y²+z²)-R1a)²+w²)-R2)² + (√(v²+u²+t²)-R1b)² = Rmin²
(((III)II)(II)) - S1x[S2*S1]xS2 : (√((√(x²+y²+z²)-R1a)²+w²+v²)-R2)² + (√(u²+t²)-R1b)² = Rmin²
(((IIII)I)(II)) - S1xC2xS3 : (√((√(x²+y²+z²+w²)-R1a)²+v²)-R2)² + (√(u²+t²)-R1b)² = Rmin²
-
(((II)I)(IIII)) - S1x[T2*S3] : (√((√(x²+y²)-R1a)²+z²)-R2)² + (√(w²+v²+u²+t²)-R1b)² = Rmin²
(((II)II)(III)) - S1x[S2*S2]xS1 : (√((√(x²+y²)-R1a)²+z²+w²)-R2)² + (√(v²+u²+t²)-R1b)² = Rmin²
(((II)III)(II)) - S1x[S3*S1]xS1 : (√((√(x²+y²)-R1a)²+z²+w²+v²)-R2)² + (√(u²+t²)-R1b)² = Rmin²
-
(((II)(II))III) - S3xS1xC2 : (√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)²)-R2)² +v²+u²+t² = Rmin²
(((III)(II))II) - S2xS1x[S2*S1] : (√((√(x²+y²+z²)-R1a)² + (√(w²+v²)-R1b)²)-R2)² +u²+t² = Rmin²
(((III)(III))I) - T2x[S2*S2] : (√((√(x²+y²+z²)-R1a)² + (√(w²+v²+u²)-R1b)²)-R2)² +t² = Rmin²
(((IIII)(II))I) - T2x[S3*S1] : (√((√(x²+y²+z²+w²)-R1a)² + (√(v²+u²)-R1b)²)-R2)² +t² = Rmin²
-
(((II)(II)I)II) - S2xS2xC2 : (√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)² +v²)-R2)² +u²+t² = Rmin²
(((II)(II)II)I) - S1xS3xC2 : (√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)² +v²+u²)-R2)² +t² = Rmin²
(((III)(II)I)I) - S1xS2x[S2*S1] : (√((√(x²+y²+z²)-R1a)² + (√(w²+v²)-R1b)² +u²)-R2)² +t² = Rmin²
Degree-32 of genus-4
----------------------
(((((II)I)I)I)II) - S2xT4 : (√((√((√((√(x²+y²)-R1)² +z²)-R2)² +w²)-R3)² +v²)-R4)² +u²+t² = Rmin²
(((((II)I)I)II)I) - S1xS2xT3 : (√((√((√((√(x²+y²)-R1)² +z²)-R2)² +w²)-R3)² +v²+u²)-R4)² +t² = Rmin²
(((((II)I)II)I)I) - T2xS2xT2 : (√((√((√((√(x²+y²)-R1)² +z²)-R2)² +w²+v²)-R3)² +u²)-R4)² +t² = Rmin²
(((((II)II)I)I)I) - T3xS2xS1 : (√((√((√((√(x²+y²)-R1)² +z²+w²)-R2)² +v²)-R3)² +u²)-R4)² +t² = Rmin²
(((((III)I)I)I)I) - T4xS2 : (√((√((√((√(x²+y²+z²)-R1)² +w²)-R2)² +v²)-R3)² +u²)-R4)² +t² = Rmin²
-----------------
(((II)(II))(II)I) - S2xS1xC3 : (√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)²)-R2)² + (√(v²+u²)-R1c)² +t² = Rmin²
(((II)(II))(III)) - S1x[(S1xC2)*S2] : (√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)²)-R2)² + (√(v²+u²+t²)-R1c)² = Rmin²
(((II)(II)I)(II)) - S1x[(S2xC2)*S1] : (√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)² +v²)-R2)² + (√(u²+t²)-R1c)² = Rmin²
(((III)(II))(II)) - T2x[S2*S1*S1] : (√((√(x²+y²+z²)-R1a)² + (√(w²+v²)-R1b)²)-R2)² + (√(u²+t²)-R1c)² = Rmin²
-
(((II)I)((II)I)I) - S2xC2xC2 : (√((√(x²+y²)-R1a)²+z²)-R2a)² + (√((√(w²+v²)-R1b)²+u²)-R2b)² +t² = Rmin²
(((II)II)((II)I)) - S1x[S2*S1]xC2 : (√((√(x²+y²)-R1a)²+z²+w²)-R2a)² + (√((√(v²+u²)-R1b)²+t²)-R2b)² = Rmin²
(((III)I)((II)I)) - S1xC2x[S2*S1] : (√((√(x²+y²+z²)-R1a)²+w²)-R2a)² + (√((√(v²+u²)-R1b)²+t²)-R2b)² = Rmin²
-
((((II)I)I)(II)I) - S2xC2xT2 : (√((√((√(x²+y²)-R1a)²+z²)-R2)²+w²)-R3)² + (√(v²+u²)-R1b)² +t² = Rmin²
((((II)I)I)(III)) - S1x[T3*S2] : (√((√((√(x²+y²)-R1a)²+z²)-R2)²+w²)-R3)² + (√(v²+u²+t²)-R1b)² = Rmin²
((((II)I)II)(II)) - S1x[S2*S1]xT2 : (√((√((√(x²+y²)-R1a)²+z²)-R2)²+w²+v²)-R3)² + (√(u²+t²)-R1b)² = Rmin²
((((II)II)I)(II)) - S1xC2xS2xS1 : (√((√((√(x²+y²)-R1a)²+z²+w²)-R2)²+v²)-R3)² + (√(u²+t²)-R1b)² = Rmin²
((((III)I)I)(II)) - S1xC2xS1xS2 : (√((√((√(x²+y²+z²)-R1a)²+w²)-R2)²+v²)-R3)² + (√(u²+t²)-R1b)² = Rmin²
-
((((II)(II))I)II) - S2xT2xC2 : (√((√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)²)-R2)² +v²)-R3)² +u²+t² = Rmin²
((((II)(II))II)I) - S1xS2xS1xC2 : (√((√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)²)-R2)² +v²+u²)-R3)² +t² = Rmin²
((((II)(II)I)I)I) - T2xS2xC2 : (√((√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)² +v²)-R2)² +u²)-R3)² +t² = Rmin²
((((III)(II))I)I) - T3x[S2*S1] : (√((√((√(x²+y²+z²)-R1a)² + (√(w²+v²)-R1b)²)-R2)² +u²)-R3)² +t² = Rmin²
-
((((II)I)(II))II) - S2xS1xC2xS1 : (√((√((√(x²+y²)-R1a)²+z²)-R2)² + (√(w²+v²)-R1b)²)-R3)² +u²+t² = Rmin²
((((II)I)(II)I)I) - S1xS2xC2xS1 : (√((√((√(x²+y²)-R1a)²+z²)-R2)² + (√(w²+v²)-R1b)² +u²)-R3)² +t² = Rmin²
((((II)I)(III))I) - T2x[T2*S2] : (√((√((√(x²+y²)-R1a)²+z²)-R2)² + (√(w²+v²+u²)-R1b)²)-R3)² +t² = Rmin²
((((II)II)(II))I) - T2x[S2*S1]xS1 : (√((√((√(x²+y²)-R1a)²+z²+w²)-R2)² + (√(v²+u²)-R1b)²)-R3)² +t² = Rmin²
((((III)I)(II))I) - T2xC2xS2 : (√((√((√(x²+y²+z²)-R1a)²+w²)-R2)² + (√(v²+u²)-R1b)²)-R3)² +t² = Rmin²
-
(((II)I)(II)(II)) - S2xC3xS1 : (√((√(x²+y²)-R1a)²+z²)-R2)² + (√(w²+v²)-R1b)² + (√(u²+t²)-R1c)² = Rmin²
(((II)(II)(II))I) - S1xS2xC3 : (√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)² + (√(v²+u²)-R1c)²)-R2)² +t² = Rmin²
Degree-64 of genus-5
----------------------
((((II)(II))(II))I) - T3xC3 : (√((√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)²)-R2)² + (√(v²+u²)-R1c)²)-R3)² +t² = Rmin²
(((II)(II))((II)I)) - S1xC2xC3 : (√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)²)-R3)² + (√((√(v²+u²)-R1c)²+t²)-R2)² = Rmin²
((((II)(II))I)(II)) - S1xC2xS1xC2 : (√((√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)²)-R2)² +v²)-R3)² + (√(u²+t²)-R1c)² = Rmin²
((((II)I)(II))(II)) - T2xC3xS1 : (√((√((√(x²+y²)-R1a)²+z²)-R2)² + (√(w²+v²)-R1b)²)-R3)² + (√(u²+t²)-R1c)² = Rmin²
-
((((II)I)((II)I))I) - T2xC2xC2 : (√((√((√(x²+y²)-R1a)²+z²)-R2a)² + (√((√(w²+v²)-R1b)²+u²)-R2b)²)-R3)² +t² = Rmin²
((((II)I)I)((II)I)) - S1xC2xC2xS1 : (√((√((√(x²+y²)-R1a)²+z²)-R2a)²+w²)-R3)² + (√((√(v²+u²)-R1b)²+t²)-R2b)² = Rmin²
-
(((((II)I)I)I)(II)) - S1xC2xT3 : (√((√((√((√(x²+y²)-R1a)²+z²)-R2)²+w²)-R3)²+v²)-R4)² + (√(u²+t²)-R1b)² = Rmin²
(((((II)I)I)(II))I) - T2xC2xT2 : (√((√((√((√(x²+y²)-R1a)²+z²)-R2)²+w²)-R3)² + (√(v²+u²)-R1b)²)-R4)² +t² = Rmin²
(((((II)I)(II))I)I) - T3xC2xS1 : (√((√((√((√(x²+y²)-R1a)²+z²)-R2)² + (√(w²+v²)-R1b)²)-R3)² +u²)-R4)² +t² = Rmin²
(((((II)(II))I)I)I) - T4xC2 : (√((√((√((√(x²+y²)-R1a)² + (√(z²+w²)-R1b)²)-R2)² +v²)-R3)² +u²)-R4)² +t² = Rmin²
((((((II)I)I)I)I)I) - T6 : (√((√((√((√((√(x²+y²)-R1)² +z²)-R2)² +w²)-R3)² +v²)-R4)² +u²)-R5)² +t² = Rmin²