Ursatope (EntityClass, 8)

From Hi.gher. Space

(Difference between revisions)
(naming, links and add details for expanded ursachora)
m (ontology)
Line 1: Line 1:
 +
<[#ontology [kind class] [cats Polytope]]>
The [[ursatope]]s are bistratic polytopes that may be constructed from any polytope P. P with unit edge length, P scaled by the golden ratio, and rectified P with unit edge length, are placed in three parallel hyperplanes, the relative heights of which are adjusted such that vertices from the three layers line up to form pentagons. The convex hull of these three layers of vertices will be a polytope that has P as the top cell, rectified P as the bottom cell, and lower-dimensional ursatopes and pyramids lacing the two. If the resulting edge lengths are equal, the result will be a CRF (convex regular-faced) polytope.
The [[ursatope]]s are bistratic polytopes that may be constructed from any polytope P. P with unit edge length, P scaled by the golden ratio, and rectified P with unit edge length, are placed in three parallel hyperplanes, the relative heights of which are adjusted such that vertices from the three layers line up to form pentagons. The convex hull of these three layers of vertices will be a polytope that has P as the top cell, rectified P as the bottom cell, and lower-dimensional ursatopes and pyramids lacing the two. If the resulting edge lengths are equal, the result will be a CRF (convex regular-faced) polytope.

Revision as of 23:19, 11 February 2014

The ursatopes are bistratic polytopes that may be constructed from any polytope P. P with unit edge length, P scaled by the golden ratio, and rectified P with unit edge length, are placed in three parallel hyperplanes, the relative heights of which are adjusted such that vertices from the three layers line up to form pentagons. The convex hull of these three layers of vertices will be a polytope that has P as the top cell, rectified P as the bottom cell, and lower-dimensional ursatopes and pyramids lacing the two. If the resulting edge lengths are equal, the result will be a CRF (convex regular-faced) polytope.

List of ursatopes

In 2D, there is one ursatope: the digonal ursagon, which is the same as a pentagon.

In 3D, there is one CRF ursatope: the trigonal ursahedron, which is the same as the tridiminished icosahedron.

The other ursahedra, such as the square ursahedron and the pentagonal ursahedron (which is a diminished dodecahedron), are not CRF.

In 4D, there are three known CRF ursatopes:

Other ursachora are possible, but it is believed that they are not CRF.

In 5D, there are believed to be the following CRF ursatopes:

In all higher dimensions n > 5, only two CRF ursatopes are believed possible:

  • The pyroursatope: (n+1) pyro-(n-1)-topes, a rectified pyro-(n-1)-tope and n pyroursa-(n-1)-topes;
  • The aeroursatope: an aero-(n-1)-tope, a rectified aero-(n-1)-tope, 2n-1 pyroursa-(n-1)-topes and (2n-2) aero-(n-2)-tope pyramids.

Expanded ursatopes

Expanded ursatopes may be constructed by expanding the facets of the top facet such that the ursatope facets are pushed apart. Prisms are inserted between the ursatope facets, causing the bottom facet to also expand, and the lacing pyramids to expand into cupolae. Expanded ursatopes may be used to construct higher-dimensional modified ursatopes in which the lacing facets are expanded ursatopes, etc.

Each of the three ursachora have corresponding expanded forms: