# Tiger (EntityTopic, 11)

(Difference between revisions)
 Revision as of 20:24, 22 September 2007 (view source)Keiji (Talk | contribs)m (rm "geometry")← Older edit Revision as of 19:43, 19 November 2007 (view source)mNewer edit → Line 1: Line 1: - {{Shape|Tiger|''No image''|4|?, ?, ?, 0|1|N/A|N/A|''Unknown''|(22)|N/A|N/A|N/A|44|N/A|N/A|strange}} + {{Shape + | attrib=strange + | name=Tiger + | dim=4 + | elements=?, ?, ?, 0 + | genus=1 + | 20=SSC + | rns=(22) + | rot_i=44 + }} == Equations == == Equations ==

## Equations

• Variables:
a ⇒ major radius of the tiger in the xy plane
b ⇒ major radius of the tiger in the zw plane
r ⇒ minor radius of the tiger
• All points (x, y, z, w) that lie on the surcell of a tiger will satisfy the following equation:

(sqrt(x2+y2) - a)2 + (sqrt(z2+w2) - b)2 = r2

x = acos(θ1) + rcos(θ1)cos(θ3)
y = asin(θ1) + rsin(θ1)cos(θ3)
z = bcos(θ2) + rcos(θ2)sin(θ3)
w = bsin(θ2) + rsin(θ2)sin(θ3)
total edge length = Unknown
total surface area = Unknown
surcell volume = Unknown
bulk = Unknown
For realms parallel to one of the axes, they are formed by rotating Cassini ovals around a line parallel with their major axis, and not intersecting the ovals.

 Notable Tetrashapes Regular: pyrochoron • aerochoron • geochoron • xylochoron • hydrochoron • cosmochoron Powertopes: triangular octagoltriate • square octagoltriate • hexagonal octagoltriate • octagonal octagoltriate Circular: glome • cubinder • duocylinder • spherinder • sphone • cylindrone • dicone • coninder Torii: tiger • torisphere • spheritorus • torinder • ditorus